Evaluating methods for measuring in‐river bathymetry: Remote sensing green LIDAR provides high‐resolution channel bed topography limited by water penetration capability

Author:

Kastdalen Leif1,Stickler Morten12,Malmquist Christian3ORCID,Heggenes Jan1ORCID

Affiliation:

1. Department of Natural Sciences and Environmental Health University of South‐Eastern Norway Bø Norway

2. Norwegian Water Resources & Energy Directorate (NVE) Oslo Norway

3. Norwegian Mapping Authority Bodø Norway

Abstract

AbstractThe objective was to evaluate the feasibility of measuring bathymetry using airborne green LiDAR in long and variable river reaches (4 km or more), across three rivers with varying gradients, water depths and light penetration (3.5–10 m), using four alternative LiDAR sensors. The accuracy of green LiDAR data was compared to in situ measurements collected by stratified transect point sampling and Multibeam bathymetry. Factors potentially limiting the feasibility of green LIDAR in rivers were explored. If remote sensing signals were reflected by the riverbed, the sensors generally provided elevation data consistent with in situ elevation measurements, indicating high accuracy (±10 cm) across different hydraulic conditions. The loss of green LiDAR data was mainly a consequence of limited signal water penetration capability, that is, water clarity. Secchi depth was a proxy variable strongly associated with green LiDAR penetration capability across rivers. Data loss was low up to the Secchi depth but increased rapidly thereafter. Surface water turbulence (‘white water’) and dark riverbed vegetation also increased green LiDAR signal loss. Sensors with lower point density and therefore less spatial resolution had more signal strength and therefore penetrated deeper water. However, with increasing coverage of surface turbulence (‘white water’), the importance of high point density also increased. Signal power should be balanced with signal density (spatial resolution), depending on river characteristics and project objectives. We conclude that remote sensing green LiDAR bathymetry is a robust method that efficiently provides accurate elevation data across rivers with different hydraulic conditions and water depths.

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3