Label distribution learning with high‐order label correlations

Author:

Li Yulin12ORCID,Lin Yaojin123,Yu Xiehua4,Guo Lei3ORCID,Li Shaozi5

Affiliation:

1. School of Computer Science Minnan Normal University Zhangzhou China

2. Lab of Data Science and Intelligence Application Minnan Normal University Zhangzhou China

3. Fujian Key Laboratory of Big Data Application and Intellectualization for Tea Industry Wuyi University Nanping China

4. School of Computer and Information MinNan Science and Technology University Quanzhou China

5. Department of Artificial Intelligence Xiamen University Xiamen China

Abstract

SummaryLabel distribution learning (LDL) is an emerging learning paradigm, which can be used to solve the label ambiguity problem. In spite of the recent great progress in LDL algorithms considering label correlations, the majority of existing methods only measure pairwise label correlations through the commonly used similarity metric, which is incapable of accurately reflecting the complex relationship between labels. To solve this problem, a novel label distribution learning method—based on high‐order label correlations (LDL‐HLC) is proposed. By virtue of the ‐regularization sparse reconstruction of the label space, the high‐order label correlations matrix is firstly obtained. Then, a new regular term can be constructed to fit the final prediction label distribution via the correction matrix. Furthermore, efficient classification performance and complete feature selection are guaranteed by common features learning via ‐regularization. Finally, the performance and effectiveness of the proposed algorithm are well illustrated through extensive experiments on 14 label distribution datasets and comparisons with some existing algorithms.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3