PON1 has palmitoyl‐protein thioesterase (PPT) activity, and can affect the presence of SR‐B1 on the endothelial cell membrane

Author:

Ashkar Rasha12,Khattib Ali13,Musa Sanaa12ORCID,Goldberg Doron12,Khatib Soliman12ORCID

Affiliation:

1. Laboratory of Natural Compounds and Analytical Chemistry MIGAL – Galilee Research Institute Kiryat Shmona Israel

2. Tel‐Hai College Upper Galilee Israel

3. The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center Haifa Israel

Abstract

AbstractThe high‐density lipoprotein (HDL)‐associated enzyme paraoxonase 1 (PON1) is expressed almost exclusively in the liver and is then transported by HDL to the peripheral tissues. The lipophilic nature of PON1 enables its easy exchange between the lipoprotein and cell membranes in a process that is dependent on the HDL receptor scavenger receptor class B, type 1 (SR‐B1). In endothelial cells, PON1 binding to the cell membrane leads to its internalization by endocytosis and subsequent lysosomal degradation. PON1 is a “promiscuous” enzyme with unusually broad substrate specificity in vitro, but its actual function and substrate are still unknown. The enzyme requires a lipid environment and becomes completely inactive upon delipidation. However, when PON1 binds HDL, its active site faces the lipoprotein's core and is inaccessible to external substrates. Hence, the HDL‐bound PON1 is inactive toward substrates outside the particle's lipid core and is rapidly degraded and becomes inactive upon internalization. Consequently, the enzyme is only active in the cell membrane during its transit from HDL to the cytoplasm. To assign a function to PON1, we investigated whether it is a palmitoyl‐protein thioesterase (PPT) that can hydrolyze the palmitoyl moieties of membrane proteins involved in HDL and cholesterol transport, such as SR‐B1, ABCA1, or their neighboring caveola proteins to facilitate the release of HDL or trigger its endocytosis. This study shows that PON1 can hydrolyze palmitoyl‐cysteine thioester bonds in vitro, has direct or indirect PPT activity in vivo, and can significantly decrease the presence of SR‐B1 in the endothelial membrane.

Publisher

Wiley

Subject

Clinical Biochemistry,Molecular Medicine,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3