Aging properties of a vegetable‐based polyurethane foam under high relative humidity and different temperatures

Author:

Da Silva Enio Henrique Pires1ORCID,De Barros Silvio23ORCID,Casari Pascal4ORCID,Ribeiro Marcelo Leite1ORCID

Affiliation:

1. Aeronautical Engineering Department, São Carlos School of Engineering University of São Paulo São Carlos SP Brazil

2. CESI Lineact Saint‐Nazaire France

3. Federal Center of Technological Education (CEFET/RJ) Rio de Janeiro RJ Brazil

4. CNRS, GeM, UMR 6183 Nantes Université, Ecole Centrale Nantes Saint‐Nazaire France

Abstract

AbstractThe objective of this study is to assess, characterize, and forecast the aging effects on the mechanical properties of a vegetable‐based polyurethane foam (PUF) derived from castor oil under elevated relative humidity conditions and at two distinct load orientations (aligned with the expansion direction and perpendicular to it). Ten specimens were subjected to temperatures of 60, 75, and 90°C, along with a relative humidity of 90%, for a duration of up to 60 days. Compression tests, following ASTM D1621‐16 standards and supplemented by 3D digital image correlation, revealed nearly isotropic behavior with marginally lower compression strength in the expansion direction. On the other hand, the strength of the foams at 90°C was higher in that direction. This led to a smaller activation energy (Ea) in this property, which ended up showing a shorter lifespan prediction considering the strength retention in this direction. The stiffness values were proportionally more similar in both directions than the strength ones and this was observed in the Ea for those curves. In contrast to several other foams and polyurethanes, the one examined in this study exhibited consistently higher Ea values for its mechanical properties, particularly in the transverse direction to expansion, surpassing 94 kJ/mol. This indicates a robust diffusion and chemical stability, suggesting its potential for prolonged utilization compared to conventional oil‐based foams. A prediction was made that this foam would lose 50% of its stiffness and strength in around 9.8 and 9.5 years at 20°C, respectively, considering the directions more sensitive to the aging process. This research offers valuable insights for predicting lifespan based on operating temperatures and property retention needs, contributing to the advancement of sustainable materials in structural applications.Highlights Fifty specimens investigated for each of two directions. Evaluation of vegetable‐based PUF aging process unveils density changes. Unique behavior noted: different Ea values for each direction. High Ea values indicate enhanced mechanical stability over oil‐based foams. Lifespan prediction enhances material application prospects.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3