Population Pharmacokinetic Modeling and Simulation of Pudexacianinium (ASP5354) for Dose Setting of a Phase 2 First‐in‐Patient Study: A Novel Imaging Agent for Intraoperative Ureter Visualization during Abdominopelvic Surgery

Author:

Saito Masako1,Kojima Tomoki1,Komatsu Kanji1,Takusagawa Shin1

Affiliation:

1. Astellas Pharma, Inc. Tokyo Japan

Abstract

AbstractPudexacianinium (ASP5354) chloride is an indocyanine green derivative designed to enable enhanced ureter visualization during surgery. The objective of the present analysis was to determine appropriate doses of pudexacianinium for a phase 2, dose‐ranging study (NCT04238481). Real‐time urine pudexacianinium concentration is considered a good pharmacodynamic surrogate marker, since ureter visualization likely depends on its concentration in the ureter. Using plasma and urine concentrations of pudexacianinium from a phase 1 single‐ascending‐dose (0.1‐24.0 mg) study in healthy participants, a 3‐compartment population pharmacokinetic model with a urine output compartment was developed and effectively described the concentration‐time profiles. The individual estimated glomerular filtration rates had a significant impact on drug clearance. Simulations suggested that a 1.0 mg intravenous injection would achieve target urine concentrations over 1 μg/mL (determined from previous nonclinical studies) for 3 hours postdose, assuming a urine production rate of 1.0 mL/min. Based on this simulation, doses of 0.3, 1.0, and 3.0 mg were proposed for the phase 2 study. The observed plasma concentrations were generally consistent with model predictions. For urine, although only limited data could be obtained due to the difficulties of spot urine collection from surgical patients, intraoperative ureter visualization was successful at 1.0 and 3.0 mg.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3