Measuring and reducing the carbon footprint of fMRI preprocessing in fMRIPrep

Author:

Souter Nicholas E.1ORCID,Bhagwat Nikhil2ORCID,Racey Chris13ORCID,Wilkinson Reese4ORCID,Duncan Niall W.5ORCID,Samuel Gabrielle6ORCID,Lannelongue Loïc78910ORCID,Selvan Raghavendra1112ORCID,Rae Charlotte L.1ORCID

Affiliation:

1. School of Psychology University of Sussex Brighton UK

2. McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute – Hospital) McGill University Montreal Quebec Canada

3. Sussex Neuroscience University of Sussex Brighton UK

4. Department of Physics and Astronomy University of Sussex Brighton UK

5. Graduate Institute of Mind, Brain and Consciousness Taipei Medical University Taipei Taiwan

6. Department of Global Health and Social Medicine, King's College London London UK

7. Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care University of Cambridge Cambridge UK

8. British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care University of Cambridge Cambridge UK

9. Victor Phillip Dahdaleh Heart and Lung Research Institute University of Cambridge Cambridge UK

10. Health Data Research UK Cambridge Wellcome Genome Campus and University of Cambridge Cambridge UK

11. Department of Computer Science University of Copenhagen Copenhagen Denmark

12. Department of Neuroscience University of Copenhagen Copenhagen Denmark

Abstract

AbstractComputationally expensive data processing in neuroimaging research places demands on energy consumption—and the resulting carbon emissions contribute to the climate crisis. We measured the carbon footprint of the functional magnetic resonance imaging (fMRI) preprocessing tool fMRIPrep, testing the effect of varying parameters on estimated carbon emissions and preprocessing performance. Performance was quantified using (a) statistical individual‐level task activation in regions of interest and (b) mean smoothness of preprocessed data. Eight variants of fMRIPrep were run with 257 participants who had completed an fMRI stop signal task (the same data also used in the original validation of fMRIPrep). Some variants led to substantial reductions in carbon emissions without sacrificing data quality: for instance, disabling FreeSurfer surface reconstruction reduced carbon emissions by 48%. We provide six recommendations for minimising emissions without compromising performance. By varying parameters and computational resources, neuroimagers can substantially reduce the carbon footprint of their preprocessing. This is one aspect of our research carbon footprint over which neuroimagers have control and agency to act upon.

Funder

Medical Research Council

British Heart Foundation

NIHR Cambridge Biomedical Research Centre

Health Data Research UK

Publisher

Wiley

Reference52 articles.

1. An Introduction to Bayesian Hypothesis Testing for Management Research

2. Anthony L. F. W. Kanding B. &Selvan R.(2020).Carbontracker: Tracking and predicting the carbon footprint of training deep learning models.arXiv 2007.03051.https://arxiv.org/abs/2007.03051

3. How Can Neuroscientists Respond to the Climate Emergency?

4. Bilder R. Poldrack R. Cannon T. London E. Freimer N. Congdon E. Karlsgodt K. &Sabb F.(2020).UCLA consortium for neuropsychiatric Phenomics LA5c study. OpenNeuro. [Dataset]https://doi.org/10.18112/openneuro.ds000030.v1.0.0

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3