Predicting zinc‐enhanced maize hybrid performance under stress conditions

Author:

Matongera Nakai123ORCID,Ndhlela Thokozile2,van Biljon Angeline3,Labuschagne Maryke3ORCID

Affiliation:

1. Biotechnology Research Institute Scientific and Industrial Research and Development Centre (SIRDC) Harare Zimbabwe

2. Global Maize Program International Maize and Wheat Improvement Centre (CIMMYT) Harare Zimbabwe

3. Department of Plant Sciences University of the Free State Bloemfontein South Africa

Abstract

AbstractThe low yield potential of most biofortified maize is a barrier to its full adoption and reduces its potential to curb various macro‐ and micronutrient deficiencies highly prevalent in low‐income regions of the world, such as sub‐Saharan Africa (SSA). By crossing biofortified inbred lines with different nutritional attributes such as zinc (Zn), provitamin A and protein quality, breeders are attempting to develop agronomically superior and stable multi‐nutrient maize of different genetic backgrounds. A key question, however, is the relationship between the biofortified inbred lines per se and hybrid performance under stress and non‐stress conditions. In this study, inbred line per se and testcross performance were evaluated for grain yield and secondary traits of Zn‐enhanced normal, provitamin A and quality protein maize (QPM) hybrids and estimated heterosis under combined heat and drought (HMDS) and well‐watered (WW) conditions. Responses of all secondary traits, except for the number of days to mid‐anthesis, significantly differed for HMDS and WW conditions. The contribution of heterosis to grain yield was highly significant under both management levels, although higher mid and high‐parent heterosis was observed under WW than HMDS conditions. However, the findings suggest that inbred line performance was the best determinant of hybrid performance under HMDS. Strong correlations were observed between grain yield and secondary traits for both parents and hybrids, and between secondary traits of inbred lines and hybrids under both management levels, indicating that hybrid performance can be predicted based on intrinsic inbred line performance. Phenotypic correlation between grain yield of inbred lines and hybrids was higher under HMDS than WW conditions. This study demonstrated that under HMDS conditions, performance of Zn‐enhanced hybrids could be predicted based on the performance of their corresponding inbred lines. However, the parental inbred lines should be systematically selected for desirable secondary traits correlated with HMDS tolerance during inbred line development.

Funder

National Research Foundation

Publisher

Wiley

Subject

Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3