Affiliation:
1. Department of Computer Science and Engineering School of Computer science and Engineering, and Information science Presidency University Bengaluru Karnataka India
Abstract
SummaryDue to the high performance of cloud computing‐based microservices, a wide range of industries and fields rely on them. In a containerized cloud, traditional resource management strategies are typically used to allocate and migrate virtual machines. A major problem for cloud service providers is resource allocation for containers, which directly affects system performance and resource consumption. In this paper, we propose a joint optimization of load balancing and resource allocation in the cloud using an optimal container management strategy. We aim to enhance scheduling efficiency and reduce costs by improving the container's schedule requested digitally by users. An improved backtracking search optimization (IBSO) algorithm is used to allocate resources between end‐users/IoT devices and the cloud under the consideration of service‐level agreements. Mechanic quantum recurrent neural networks (MQ‐RNNs) are designed to allocate, consolidate, and migrate containers in cloud environments. The various simulation measures used to validate the proposed strategy are energy consumption, number of active servers, number of interruptions, total cost, runtime, and statistical measures.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献