A novel hybrid forecasting model with feature selection and deep learning for wind speed research

Author:

Chen Xuejun1,Wang Ying2,Zhang Haitao1,Wang Jianzhou3

Affiliation:

1. Gansu Meteorological Service Center Lanzhou Gansu China

2. International Business School Hainan University Haikou China

3. Institute of Systems Engineering Macau University of Science and Technology Macau China

Abstract

AbstractAccurate wind speed prediction is of great importance for the operation of wind farms, and extensive efforts have been made to develop effective forecasting methods in this regard. However, the feature selection of data input as well as optimization of deep learning models have received comparatively less attention, leading to unreliable forecasting results. This research proposes a novel hybrid model that integrates data preprocessing, feature selection, and optimized forecasting for improved wind speed prediction. Specifically, a powerful preprocessing technique is utilized to reduce data noise disturbances, while an innovative two‐stage feature selection is designed to achieve the optimal input data format for forecasting purposes. Moreover, a hybrid forecasting module based on long‐short term memory, which is optimized by the Bayesian optimization algorithm, has been developed to enhance the efficiency and reliability of the model. The empirical study used 10‐min interval wind speed data of four seasons for presentation and evaluation results demonstrated its superior performance in effectively learning the volatility and irregularity features of wind speed series, which established a solid foundation for practical applications in wind power systems.

Funder

Science and Technology Program of Gansu Province

Humanities and Social Science Fund of Ministry of Education of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3