Optimization of port injection of n‐decanol in a PCCI engine using response surface methodology

Author:

Vinodkumar V.1ORCID,Karthikeyan A.2,Jayaprabakar J.2,Senthilkumar G.3,Ranganathan L.4

Affiliation:

1. Department of Mechanical Engineering Chennai Institute of Technology and Applied Research Chennai Tamil Nadu India

2. School of Mechanical Engineering Sathyabama Institute of Science and Technology Chennai Tamil Nadu India

3. Department of Mechanical Engineering Panimalar Engineering College Chennai Tamil Nadu India

4. Department of Mechanical Engineering Agni College of Technology Chennai Tamil Nadu India

Abstract

AbstractThis work aims to define the optimum n‐decanol fraction in the inlet port and the corresponding engine load for the better emissions and performance characteristics of a partially premixed charged compression ignition (PCCI) engine by response surface methodology (RSM). The numerical model based on multi‐linear regression was established using experimental data. For this, the influence of various proportions of n‐decanol through intake port including 10%, 20%, 30%, and 40% were experimentally investigated besides the primary injection of neem oil biodiesel in the volumetric ratio of 80% diesel and 20% neem biodiesel, namely NB20. The optimization using RSM is exploited to capitalize the brake thermal efficiency (BTE) and diminish the emissions including oxides of nitrogen (NOx), carbon monoxide (CO) emission, smoke opacity, and hydrocarbon (HC) emission. The n‐decanol fraction in the port injection of 31.43% and the engine load in terms of brake power of 2.950 kW were found to be optimum parameters with the maximum desirability of 0.752. The optimal responses for brake‐specific fuel consumption (BSFC), BTE, CO, HC, smoke, and NOx under these operating conditions were found to be 0.305 kg/kWh, 28.8%, 0.145%, 19.61%, 54.85 ppm, and 837.7 ppm, respectively. Likewise, the correlation coefficient R2 values for BSFC, BTE, CO, HC, smoke and NOx have been found to be 99.85%, 99.95%, 93.58%, 90.32%, 99.97%, and 99.93%, respectively. According to the study's findings, the RSM is a realistic method for calculating and enhancing a diesel engine's emission and performance values operating in PCCI mode and using n‐decanol and NB20 as fuels.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3