The inter‐history iteration method for seismic response analysis of seismically isolated structures and its secondary development based on ABAQUS

Author:

Jia Chuanguo12ORCID,Li Yutao2ORCID,Su Hongchen2ORCID,Gan Min12,Chen Longchang2,Guo Weinan2

Affiliation:

1. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University) Ministry of Education Chongqing China

2. School of Civil Engineering Chongqing University Chongqing China

Abstract

SummaryIn seismic response analysis of seismically isolated structures (SISs), the nonlinearity is concentrated in the isolation layer while the upper structure behaves linearly, making SISs locally nonlinear systems. This paper proposed a novel seismic analysis method based on equivalent linearization (EL) and iterative solution for SISs. In this method, the equilibrium equations of an SIS are expressed by the second‐order ordinary differential equations of the structural system as well as the hysteretic force of seismic isolation bearings (SIBs). Based on EL theory, the linearized equilibrium equations of the overall system were reconstructed in which the EL parameters are derived theoretically. The inter‐history iteration (IHI) method was proposed to solve the linearized equation system and calculate the EL parameters in sequence iteratively for seismic response analysis of SISs, thus reducing computational cost without excessive loss of accuracy. In addition, the secondary development of the proposed method was programmed in ABAQUS for ease of engineering applications. Finally, the convergence and accuracy of the method were investigated through numerical simulation of an SIS case study. As the numerical investigation indicates, the proposed method considers the coupling between structural response and the EL parameters, achieving a high convergence rate and satisfactory solution accuracy. The ABAQUS secondary development program utilizes the powerful pre‐processor, post‐processor, and solvers of ABAQUS, making the IHI method more appropriate for engineering applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Building and Construction,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3