Comparative genomics of rainbow trout (Oncorhynchus mykiss): Is the genetic architecture of migratory behavior conserved among populations?

Author:

Clare Catherine I.1,Nichols Krista M.2,Thrower Frank P.3,Berntson Ewann A.2,Hale Matthew C.1ORCID

Affiliation:

1. Department of Biology Texas Christian University Fort Worth Texas USA

2. Conservation Biology Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration Seattle Washington USA

3. Ted Stevens Marine Research Institute, Alaska Fisheries Science Center, NOAA Juneau Alaska USA

Abstract

AbstractRainbow trout (Oncorhynchus mykiss) are a partially migratory species wherein some individuals undergo long‐distance anadromous migrations, and others stay as residents in their native freshwater streams. The decision to migrate is known to be highly heritable, and yet, the underlying genes and alleles associated with migration are not fully characterized. Here we used a pooled approach of whole‐genome sequence data from migratory and resident trout of two native populations—Sashin Creek, Alaska and Little Sheep Creek, Oregon—to obtain a genome‐wide perspective of the genetic architecture of resident and migratory life history. We calculated estimates of genetic differentiation, genetic diversity, and selection between the two phenotypes to locate regions of interest and then compared these associations between populations. We identified numerous genes and alleles associated with life history development in the Sashin Creek population with a notable area on chromosome 8 that may play a critical role in the development of the migratory phenotype. However, very few alleles appeared to be associated with life history development in the Little Sheep Creek system, suggesting population‐specific genetic effects are likely important in the development of anadromy. Our results indicate that a migratory life history is not controlled by a singular gene or region but supports the idea that there are many independent ways for a migratory phenotype to emerge in a population. Therefore, conserving and promoting genetic diversity in migratory individuals is paramount to conserving these populations. Ultimately, our data add to a growing body of literature that suggests that population‐specific genetic effects, likely mediated through environmental variation, contribute to life history development in rainbow trout.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3