Which demographic processes control competitive equilibria? Bayesian calibration of a size‐structured forest population model
-
Published:2023-07
Issue:7
Volume:13
Page:
-
ISSN:2045-7758
-
Container-title:Ecology and Evolution
-
language:en
-
Short-container-title:Ecology and Evolution
Author:
Heiland Lukas12ORCID,
Kunstler Georges3ORCID,
Šebeň Vladimír4ORCID,
Hülsmann Lisa1ORCID
Affiliation:
1. Bayreuth Center of Ecology and Environmental Research (BayCEER), Ecosystem Analysis and Simulation (EASI) Lab University of Bayreuth Bayreuth Germany
2. Theoretical Ecology University of Regensburg Regensburg Germany
3. Université Grenoble Alpes, Inrae, LESSEM Grenoble France
4. Národné lesnícke centrum Zvolen Slovakia
Abstract
AbstractIn forest communities, light competition is a key process for community assembly. Species' differences in seedling and sapling tolerance to shade cast by overstory trees is thought to determine species composition at late‐successional stages. Most forests are distant from these late‐successional equilibria, impeding a formal evaluation of their potential species composition. To extrapolate competitive equilibria from short‐term data, we therefore introduce the JAB model, a parsimonious dynamic model with interacting size‐structured populations, which focuses on sapling demography including the tolerance to overstory competition. We apply the JAB model to a two‐“species” system from temperate European forests, that is, the shade‐tolerant species Fagus sylvatica L. and the group of all other competing species. Using Bayesian calibration with prior information from external Slovakian national forest inventory (NFI) data, we fit the JAB model to short time series from the German NFI. We use the posterior estimates of demographic rates to extrapolate that F. sylvatica will be the predominant species in 94% of the competitive equilibria, despite only predominating in 24% of the initial states. We further simulate counterfactual equilibria with parameters switched between species to assess the role of different demographic processes for competitive equilibria. These simulations confirm the hypothesis that the higher shade tolerance of F. sylvatica saplings is key for its long‐term predominance. Our results highlight the importance of demographic differences in early life stages for tree species assembly in forest communities.
Funder
Agence Nationale de la Recherche
Agentúra na Podporu Výskumu a Vývoja
Deutsche Forschungsgemeinschaft
Horizon 2020 Framework Programme
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics
Reference83 articles.
1. Structural attributes of stand overstory and light under the canopy;Angelini A.;Annals of Silvicultural Research,2015
2. Nature and distribution of rain-forests in New South Wales
3. A comparison of distance‐dependent competition measures for height and basal area growth of individual conifer trees;Biging G. S.;Forest Science,1992
4. Forecasting species range dynamics with process‐explicit models: matching methods to applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献