Ocean connectivity and habitat characteristics predict population genetic structure of seagrass in an extreme tropical setting

Author:

Hernawan Udhi E.12ORCID,van Dijk Kor‐jent3ORCID,Kendrick Gary A.45ORCID,Feng Ming56ORCID,Berry Oliver56ORCID,Kavazos Christopher1,McMahon Kathryn15ORCID

Affiliation:

1. School of Science and Centre for Marine Ecosystems Research Edith Cowan University Joondalup Western Australia Australia

2. Research Centre for Oceanography (PRO), National Research and Innovation Agency (BRIN) Jakarta Indonesia

3. School of Biological Sciences The University of Adelaide Adelaide South Australia Australia

4. School of Biological Sciences and The Ocean Institute The University of Western Australia Crawley Western Australia Australia

5. Western Australian Marine Science Institution Perth Western Australia Australia

6. CSIRO Environment, Indian Ocean Marine Research Centre Crawley Western Australia Australia

Abstract

AbstractUnderstanding patterns of gene flow and processes driving genetic differentiation is important for a broad range of conservation practices. In marine organisms, genetic differentiation among populations is influenced by a range of spatial, oceanographic, and environmental factors that are attributed to the seascape. The relative influences of these factors may vary in different locations and can be measured using seascape genetic approaches. Here, we applied a seascape genetic approach to populations of the seagrass, Thalassia hemprichii, at a fine spatial scale (~80 km) in the Kimberley coast, western Australia, a complex seascape with strong, multidirectional currents greatly influenced by extreme tidal ranges (up to 11 m, the world's largest tropical tides). We incorporated genetic data from a panel of 16 microsatellite markers, overwater distance, oceanographic data derived from predicted passive dispersal on a 2 km‐resolution hydrodynamic model, and habitat characteristics from each meadow sampled. We detected significant spatial genetic structure and asymmetric gene flow, in which meadows 12–14 km apart were less connected than ones 30–50 km apart. This pattern was explained by oceanographic connectivity and differences in habitat characteristics, suggesting a combined scenario of dispersal limitation and facilitation by ocean current with local adaptation. Our findings add to the growing evidence for the key role of seascape attributes in driving spatial patterns of gene flow. Despite the potential for long‐distance dispersal, there was significant genetic structuring over small spatial scales implicating dispersal and recruitment bottlenecks and highlighting the importance of implementing local‐scale conservation and management measures.

Funder

Department of Education and Training

Western Australian Marine Science Institution

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3