Oviposition behavior is not affected by ultraviolet light in a butterfly with sexually‐dimorphic expression of a UV‐sensitive opsin

Author:

Borrero Jose1ORCID,Wright Daniel Shane1ORCID,Bacquet Caroline Nicole2ORCID,Merrill Richard M.1ORCID

Affiliation:

1. Division of Evolutionary Biology LMU Munich Munich Germany

2. Universidad Regional Amazónica de Ikiam Tena Ecuador

Abstract

AbstractAnimal vision is important for mediating multiple complex behaviors. In Heliconius butterflies, vision guides fundamental behaviors such as oviposition, foraging, and mate choice. Color vision in Heliconius involves ultraviolet (UV), blue and long‐wavelength‐sensitive photoreceptors (opsins). Additionally, Heliconius possess a duplicated UV opsin, and its expression varies widely within the genus. In Heliconius erato, opsin expression is sexually dimorphic; only females express both UV‐sensitive opsins, enabling UV wavelength discrimination. However, the selective pressures responsible for sex‐specific differences in opsin expression and visual perception remain unresolved. Female Heliconius invest heavily in finding suitable hostplants for oviposition, a behavior heavily dependent on visual cues. Here, we tested the hypothesis that UV vision is important for oviposition in H. erato and Heliconius himera females by manipulating the availability of UV in behavioral experiments under natural conditions. Our results indicate that UV does not influence the number of oviposition attempts or eggs laid, and the hostplant, Passiflora punctata, does not reflect UV wavelengths. Models of H. erato female vision suggest only minimal stimulation of the UV opsins. Overall, these findings suggest that UV wavelengths do not directly affect the ability of Heliconius females to find suitable oviposition sites. Alternatively, UV discrimination could be used in the context of foraging or mate choice, but this remains to be tested.

Funder

H2020 European Research Council

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3