Effect of melt‐processing conditions on the electrical conductivity and microwave absorbing properties of composites based on clean scrap poly(vinylidene fluoride/ethylene vinyl acetate copolymer and graphene nanoplatelets

Author:

Schmitz Debora P.1,Cunha Beatriz S.2,Soares Bluma G.12ORCID

Affiliation:

1. Universidade Federal do Rio de Janeiro – IMA Rio de Janeiro Rio de Janeiro Brazil

2. Universidade Federal do Rio de Janeiro – PEMM‐COPPE Rio de Janeiro Rio de Janeiro Brazil

Abstract

AbstractClean scrap polyvinylidene fluoride (rPVDF) from industrial reject was compounded with ethylene vinyl acetate (EVA) copolymer and graphene nanoplatelets (GNP) to produce low cost and scalable conductive composites. The effect of the melt processing conditions (temperature, time, and rotor speed) on the electrical conductivity and microwave absorbing (MWA) properties was investigated. All systems presented co‐continuous morphology indicated by scanning electron microscopy (SEM) and selective extraction experiments. The preferential localization of GNP in the EVA phase was evidenced by selective extraction and thermogravimetric analysis (TGA). Higher conductivity value was observed for the composite processed at 210°C for 3 min at a rotor speed of 200 rpm. The MWA performance of monolayer and bilayer composite structures with 2 mm thickness was investigated in terms of minimum reflection loss (RL) and effective absorption bandwidth (EAB). The bilayer system provided the best MWA response with RL = − 43.1 dB (>99.99% of EM attenuation) when prepared at 190°C for 3 min at a rotor speed of 200 rpm. The ecological and environmental importance of finding new applications for plastic waste, and the low cost of the materials and processing make this composite an interesting candidate for MWA purpose.Highlights Promising application of clean scrap polyvinylidene fluoride (PVDF) in microwave absorbing materials; Conductivity and absorbing performance are affected by processing conditions; Co‐continuous structure of rPVDF/EVA blend influenced by graphene nanoplatelets (GNP); Selective localization of GNP in EVA phase; Outstanding microwave absorption properties achieved with bi‐layer structure.

Funder

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3