Optimizing dual‐energy CT technique for iodine‐based contrast‐to‐noise ratio, a theoretical study

Author:

Terzioglu Fatma1,Sidky Emil Y.2,Phillips John Paul2,Reiser Ingrid S.2,Bal Guillaume3,Pan Xiaochuan2

Affiliation:

1. Department of Mathematics North Carolina State University Raleigh North Carolina USA

2. Department of Radiology The University of Chicago Chicago Illinois USA

3. Departments of Statistics and Mathematics The University of Chicago Chicago Illinois USA

Abstract

AbstractBackgroundDual‐energy CT (DECT) systems provide valuable material‐specific information by simultaneously acquiring two spectral measurements, resulting in superior image quality and contrast‐to‐noise ratio (CNR) while reducing radiation exposure and contrast agent usage. The selection of DECT scan parameters, including x‐ray tube settings and fluence, is critical for the stability of the reconstruction process and hence the overall image quality.PurposeThe goal of this study is to propose a systematic theoretical method for determining the optimal DECT parameters for minimal noise and maximum CNR in virtual monochromatic images (VMIs) for fixed subject size and total radiation dose.MethodsThe noise propagation in the process of projection based material estimation from DECT measurements is analyzed. The main components of the study are the mean pixel variances for the sinogram and monochromatic image and the CNR, which were shown to depend on the Jacobian matrix of the sinograms‐to‐DECT measurements map.Analytic estimates for the mean sinogram and monochromatic image pixel variances and the CNR as functions of tube potentials, fluence, and VMI energy are derived, and then used in a virtual phantom experiment as an objective function for optimizing the tube settings and VMI energy to minimize the image noise and maximize the CNR.ResultsIt was shown that DECT measurements corresponding to kV settings that maximize the square of Jacobian determinant values over a domain of interest lead to improved stability of basis material reconstructions.Instances of non‐uniqueness in DECT were addressed, focusing on scenarios where the Jacobian determinant becomes zero within the domain of interest despite significant spectral separation. The presence of non‐uniqueness can lead to singular solutions during the inversion of sinograms‐to‐DECT measurements, underscoring the importance of considering uniqueness properties in parameter selection.Additionally, the optimal VMI energy and tube potentials for maximal CNR was determined. When the x‐ray beam filter material was fixed at 2 mm of aluminum and the photon fluence for low and high kV scans were considered equal, the tube potential pair of 60/120 kV led to the maximal iodine CNR in the VMI at 53 keV.ConclusionsOptimizing DECT scan parameters to maximize the CNR can be done in a systematic way. Also, choosing the parameters that maximize the Jacobian determinant over the set of expected line integrals leads to more stable reconstructions due to the reduced amplification of the measurement noise. Since the values of the Jacobian determinant depend strongly on the imaging task, careful consideration of all of the relevant factors is needed when implementing the proposed framework.

Funder

National Science Foundation

National Institutes of Health

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3