A Bayesian platform trial design with hybrid control based on multisource exchangeability modelling

Author:

Wei Wei1ORCID,Blaha Ondrej1ORCID,Esserman Denise1ORCID,Zelterman Daniel1,Kane Michael1ORCID,Liu Rachael2ORCID,Lin Jianchang2ORCID

Affiliation:

1. Department of Biostatistics Yale School of Public Health New Haven Connecticut USA

2. Statistical & Quantitative Sciences Takeda Pharmaceuticals Cambridge Massachusetts USA

Abstract

Enrolling patients to the standard of care (SOC) arm in randomized clinical trials, especially for rare diseases, can be very challenging due to the lack of resources, restricted patient population availability, and ethical considerations. As the therapeutic effect for the SOC is often well documented in historical trials, we propose a Bayesian platform trial design with hybrid control based on the multisource exchangeability modelling (MEM) framework to harness historical control data. The MEM approach provides a computationally efficient method to formally evaluate the exchangeability of study outcomes between different data sources and allows us to make better informed data borrowing decisions based on the exchangeability between historical and concurrent data. We conduct extensive simulation studies to evaluate the proposed hybrid design. We demonstrate the proposed design leads to significant sample size reduction for the internal control arm and borrows more information compared to competing Bayesian approaches when historical and internal data are compatible.

Funder

National Center for Advancing Translational Sciences

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3