A discrete approximation method for modeling interval‐censored multistate data

Author:

You Lu1ORCID,Liu Xiang1,Krischer Jeffrey1

Affiliation:

1. Health Informatics Institute University of South Florida Tampa Florida USA

Abstract

Many longitudinal studies are designed to monitor participants for major events related to the progression of diseases. Data arising from such longitudinal studies are usually subject to interval censoring since the events are only known to occur between two monitoring visits. In this work, we propose a new method to handle interval‐censored multistate data within a proportional hazards model framework where the hazard rate of events is modeled by a nonparametric function of time and the covariates affect the hazard rate proportionally. The main idea of this method is to simplify the likelihood functions of a discrete‐time multistate model through an approximation and the application of data augmentation techniques, where the assumed presence of censored information facilitates a simpler parameterization. Then the expectation‐maximization algorithm is used to estimate the parameters in the model. The performance of the proposed method is evaluated by numerical studies. Finally, the method is employed to analyze a dataset on tracking the advancement of coronary allograft vasculopathy following heart transplantation.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3