Pressure mapped squeeze flow (PMSF): Extending rheological characterization of mortars beyond traditional rheometry

Author:

Grandes Franco A.12ORCID,Rego Andressa C. A.12,Rebmann Markus S.12ORCID,Cardoso Fábio A.12ORCID,Pileggi Rafael G.12ORCID

Affiliation:

1. National Institute on Advanced Eco‐Efficient Cement‐Based Technologies São Paulo Brazil

2. Department of Construction Engineering Escola Politécnica, University of São Paulo São Paulo Brazil

Abstract

AbstractThe rheometric techniques available for the evaluation of mortars involve a different set of flow conditions. Squeeze flow is based on the compression of the sample with gap reduction and geometric restrictions, providing important information even when phase separation occurs and an evaluation in conditions similar to those found in several practical situations for many classes of materials, including cement‐based and ceramics. Traditional squeeze flow results are related to bulk normal force and height variation of a sample compressed between parallel plates. Additional information regarding boundary conditions at the interfaces or phenomena related to differential flow can be obtained through further instrumentation of the test. The combination of squeeze flow and a pressure mapping technique has been recently proposed, with great potential for the analysis of cement‐based materials and other granular suspensions. In this work, four mortars were evaluated by the pressure mapped squeeze flow (PMSF) method in two different displacement rates, and new ways to analyze the results were developed to expand the understanding of the flow through the technique, including plotting the pressure along multiple circumferences and an analysis of variation in each radial position. PMSF results were also compared to rotational rheometry and flow table tests for the first time, and concepts of interparticle separation were employed to discuss microstructural aspects of the flow. Due to the variety of mix designs (admixtures, particle size distribution, air content, water content, and other factors), the mortars presented diverse behaviors, ranging from primarily viscous or plastic flows to more granular responses (related to friction between particles with localized formation of jammed structures due to liquid phase migration). This work is part of an effort to establish a foundation for PMSF as a rheometric method that can be used for the analysis of a wide range of materials.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials,Ceramics and Composites,Biomaterials,Materials Science (miscellaneous)

Reference23 articles.

1. Rheological behavior of mortars under different squeezing rates

2. Rheology of fresh cement and concrete;Banfill PFG;Rheol Rev,2006

3. Characterisation of rendering mortars by squeeze-flow and rotational rheometry

4. Rheology and setting of alkali‐activated slag pastes and mortars: effect of organic admixture;Palacios M;Mater J,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3