Institutional and technical history of requirements‐based strategic armor ceramics basic research leading up to the multiscale material by design materials in extreme dynamic environments (MEDE) program. Part II: Dynamic effects on the physics and mechanisms of advanced ceramics such as boron carbide

Author:

McCauley James W.1ORCID,Ramesh K. T.2

Affiliation:

1. Johns Hopkins University Hopkins Extreme Materials Institute (HEMI) Army Research Laboratory Ret Adelphi Maryland USA

2. Hopkins Extreme Materials Institute (HEMI) Johns Hopkins University Baltimore Maryland USA

Abstract

AbstractThis paper follows a historical background on requirements‐based strategic armor research, leading to the materials in extreme dynamic environments program presented in Part I, now focusing on the developed technical aspects and state‐of‐the‐art. It starts with some background on dynamic testing techniques and a structural ceramics review. Then, selected armor ceramics research results and relevant single‐grain anisotropic crystal physics, microstructure, and defect mechanics mechanisms: Including pivotal armor ceramics research results prior to the adoption of the strategic research objective (SRO). Next, multiscale characteristics, crystal physics, planar features, anisotropy, and relevant mechanisms will be described. The historic progression/evolution of multiscale lightweight armor ceramics research results will be summarized, including multiscale dynamic deformation and damage characteristics. The focus of the following sections will be on the role of defects, quasi‐plasticity, and anisotropic crystal physics properties, including preexisting single grain synthesis and process‐induced planar features (aka twins) and planar deformation features (PDF); for example, nano‐amorphization in boron carbide. A new model for boron carbide processing planar features will be discussed. A schematic diagram illustrating the hypothetical formation of PDFs in a dynamic event is also presented. An expended canonical equation is introduced, suggesting possible strategies for boron carbide research using the canonical figures of merit approach. Finally, we highlight the efficacy of the materials by design process and approach in a multiscale framework for the simultaneous experimental and theoretical research trajectories guided by the accepted canonical equation.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials,Ceramics and Composites,Biomaterials,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3