Preparation of Bi2O3@PCPA‐KH590/chloroprene composites with good mechanical properties under high‐filling

Author:

Zeng Jun12,Li YingJun12ORCID,Lu YingChun12,Li YunPeng12,Liu HuiPing12,Wu CongXiu2,Chen MengXi2,OuYang Wei34,Zhang YiPeng34,Zhou YuanLin12

Affiliation:

1. State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China

2. School of Materials and Chemistry Southwest University of Science and Technology Mianyang China

3. Zhuzhou Rubber Research & Design Institute Co., Ltd. of Chemchina China National Chemical Corporation Zhuzhou China

4. Hunan Key Laboratory of Near‐Space Meteo‐Ballon Materials and Technology Hunan Provincial Department of Science and Technology Zhuzhou China

Abstract

AbstractAs a “green” radiation protection material with the potential to replace lead oxide, bismuth oxide has more research applications in the field of γ protection. However, due to their different surface properties, there are compatibility and interaction problems between metal oxides and rubber. To enhance the performance of bismuth oxide in neoprene, Bi2O3@PCPA‐KH590 was prepared by coating bismuth oxide with polyphenol/polyamine and grafting KH590 on the surface of bismuth oxide. This allows for creating more active sites with the help of polyphenol/polyamine, enabling KH590 to be grafted onto bismuth oxide particles. The S functional group on the silane coupling agent is then cross‐linked with the rubber substrate, enhancing the dispersibility of the bismuth oxide powder. This improvement not only improves the dispersibility of the bismuth oxide powder but also enhances the mechanical properties of the rubber composite material. Compared with pure CR, the mechanical properties of 60 wt% filler‐modified powder composites can still be maintained at a high level, with the tensile strength reaching 12.83 Mpa. In sum, the proposed method appears feasible for preparing highly filled radiation protection rubber‐based materials.

Funder

Southwest University of Science and Technology

State Key Laboratory of Environmental Friendly Energy Materials, SWUST

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3