Peridynamic‐based modeling of elastoplasticity and fracture dynamics

Author:

Wang Haoping1ORCID,Wang Xiaokun1ORCID,Xu Yanrui12ORCID,Zhang Yalan1ORCID,Yao Chao3ORCID,Guo Yu3,Ban Xiaojuan1456

Affiliation:

1. School of Intelligence Science and Technology University of Science and Technology Beijing Beijing China

2. Faculty of Science and Engineering University of Groningen Groningen Netherlands

3. School of Computer and Communication Engineering University of Science and Technology Beijing Beijing China

4. Beijing Advanced Innovation Center for Materials Genome Engineering, School of Intelligence Science and Technology University of Science and Technology Beijing Beijing China

5. Key Laboratory of Intelligent Bionic Unmanned Systems, Ministry of Education University of Science and Technology Beijing Beijing China

6. Institute of Materials Intelligent Technology Liaoning Academy of Materials Shenyang China

Abstract

AbstractThis paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic theory. Traditional approaches, such as the Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), to modeling elastic materials have primarily relied on discretization techniques and continuous constitutive model. However, accurately capturing fracture and crack development in elastoplastic materials poses significant challenges for these conventional models. Our approach integrates a Peridynamic‐based elastic model with a density constraint, enhancing stability and realism. We adopt the Von Mises yield criterion and a bond stretch criterion to simulate plastic deformation and fracture formation, respectively. The proposed method stabilizes the elastic model through a density‐based position constraint, while plasticity is modeled using the Von Mises yield criterion within the bond of particle paris. Fracturing and the generation of fine fragments are facilitated by the fracture criterion and the application of complementarity operations to the inter‐particle connections. Our experimental results demonstrate the efficacy of our framework in realistically depicting a wide range of material behaviors, including elasticity, plasticity, and fracturing, across various scenarios.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3