Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis

Author:

Lin Jiali1,Kim Inyoung1ORCID

Affiliation:

1. Department of Statistics Virginia Polytechnic Institute and State University Blacksburg Virginia USA

Abstract

AbstractAnalyzing correlated high‐dimensional data is a challenging problem in genomics, proteomics, and other related areas. For example, it is important to identify significant genetic pathway effects associated with biomarkers in which a gene pathway is a set of genes that functionally works together to regulate a certain biological process. A pathway‐based analysis can detect a subtle change in expression level that cannot be found using a gene‐based analysis. Here, we refer to pathway as a set and gene as an element in a set. However, it is challenging to select automatically which pathways are highly associated to the outcome when there are multiple pathways. In this paper, we propose a semiparametric multikernel regression model to study the effects of fixed covariates (e.g., clinical variables) and sets of elements (e.g., pathways of genes) to address a problem of detecting signal sets associated to biomarkers. We model the unknown high‐dimension functions of multi‐sets via multiple Gaussian kernel machines to consider the possibility that elements within the same set interact with each other. Hence, our variable set selection can be considered a Gaussian process set selection. We develop our Gaussian process set selection under the Bayesian variance component‐selection framework. We incorporate prior knowledge for structural sets by imposing an Ising prior on the model. Our approach can be easily applied in high‐dimensional spaces where the sample size is smaller than the number of variables. An efficient variational Bayes algorithm is developed. We demonstrate the advantages of our approach through simulation studies and through a type II diabetes genetic‐pathway analysis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3