Design of molecularly imprinted polymers (MIP) using computational methods: A review of strategies and approaches

Author:

Mohsenzadeh Enayat1,Ratautaite Vilma1ORCID,Brazys Ernestas2,Ramanavicius Simonas3,Zukauskas Sarunas1,Plausinaitis Deivis2,Ramanavicius Arunas12ORCID

Affiliation:

1. Department of Nanotechnology State Research Institute Center for Physical Sciences and Technology (FTMC) Vilnius Lithuania

2. Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences Vilnius University (VU) Vilnius Lithuania

3. Department of Electrochemical Material Science State Research Institute Center for Physical Sciences and Technology (FTMC) Vilnius Lithuania

Abstract

AbstractThis paper focuses on the computationally assisted design of molecularly imprinted polymers (MIP), emphasizing the selected strategies and chosen methods of approach. In summary, this paper provides an overview of the MIP fabrication procedure, focusing on key factors and challenges, where the fabrication of MIP includes a step‐by‐step process with extensive experimental procedures. This brings challenges in optimizing experimental conditions, such as the selection of monomer, cross‐linker, and their relevant molar ratios to the template and solvent. Next, the principles of computational methods are elucidated to explore their potential applicability in solving the challenges. The computational approach can tackle the problems and optimize the MIP's design. Finally, the atomistic, quantum mechanical (QM), and combined methods in the recent research studies are overviewed with stress on strategies, analyses, and results. It is demonstrated that optimization of pre‐polymerization mixture by employing simulations significantly reduces the trial‐and‐error experiments. Besides, higher selectivity and sensitivity of MIP are observed. The polymerization and resulting binding sites by computational methods are considered. Several models of binding sites are formed and analyzed to assess the affinities representing the sensitivity and selectivity of modeled cavities. Combined QM/atomistic methods showed more flexibility and versatility for realistic modeling with higher accuracy. This methodological advancement aligns with the principles of green chemistry, offering cost‐effective and time‐efficient solutions in MIP design.This article is categorized under: Structure and Mechanism > Molecular Structures Structure and Mechanism > Computational Materials Science Molecular and Statistical Mechanics > Molecular Interactions

Funder

Lietuvos Mokslo Taryba

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3