Effect of slit size on low‐velocity impact behavior of composite laminates with regularly arrayed chopped strands: Experimental and numerical analysis

Author:

Huang Yinyuan1,Yang Haotian1,Wang Bowen1,Hu Junfeng12ORCID,Lu Wenlong1,Li Minglong1,Zhao Jianping1

Affiliation:

1. School of Mechanical and Power Engineering Nanjing Tech University Nanjing China

2. Department of Research and Development Jiangsu Olymspan Thermal Energy Equipment Co., Ltd Changzhou China

Abstract

AbstractShort fiber reinforced polymers (SFRP) based on unidirectionally arrayed chopped strands (UACS) offer exceptional formability and great mechanical properties. To ensure its stability and safety in applications, it is crucial to enhance the impact performance of UACS laminates. This study investigated the low‐velocity impact (LVI) responses and damage evolution of UACS laminates with different slit sizes and continuous carbon fiber reinforced polymer (CFRP) laminates under various impact energies (4, 7, and 11 J). The curves of force and energy were recorded during LVI tests, and the post‐impact damage area was detected by the ultrasonic C‐scan technique. Moreover, a user‐defined subroutine VUMAT, containing a progressive damage model and a Johnson‐Cook constitutive model, was written to mimic the damage evolution. Based on experiments and numerical prediction, it was found that when the size was reduced from 25 to 5 mm, the vertical slits had the effect of suppressing delamination and could restrain the propagation of delamination, which explains the distinct difference in delamination area.Highlights The effect of slit size on the impact behavior of UACS laminate was revealed. The damage mechanism was simulated with a progressive damage model. The novel UACS laminate exhibits excellent energy absorption capacity. The resistance of the slits greatly suppresses the delamination behavior.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3