Descriptive design structure matrices for improved system dynamics qualitative modeling

Author:

Qureshi Rameez R.1ORCID,Ford David N.2ORCID,Wolf Charles M.3

Affiliation:

1. Zachry Department of Civil and Environmental Engineering Texas A&M University College Station Texas 77843 USA

2. Vecellio Professor of Construction Engineering and Management, The Charles Edward Via, Jr. Department of Civil and Environmental Engineering Virginia Tech Blacksburg Virginia 24061 USA

3. Professor of Practice, Zachry Department of Civil and Environmental Engineering Texas A&M University College Station Texas 77843 USA

Abstract

AbstractQualitative modeling approaches can be useful in system information collection, model analysis, and formal model development. This is difficult when the number of elements and their interactions in the system is large. System dynamicists need additional tools and methods to conceptually model these large tightly coupled systems. We propose and test the Descriptive Design Structure Matrix (DDSM) as a qualitative system dynamics modeling tool and approach for systems with many elements and more interactions that can reasonably be modeled individually using traditional system dynamics methods. A DDSM consists of four parallel and internally consistent matrices that describe system interactions with binary relations, nontechnical text, technical text, and literature support. By including and documenting system information in multiple forms, DDSMs facilitate multiple stages of system dynamics modeling, improve modeler communication with system participants and domain experts, and improve model rigor. DDSM construction is described. A case study of the 2014 flooding in Kashmir is used to illustrate and test a DDSM and its application. Due to their compact format, DDSMs provide a useful visual communication aid, intuitive reasoning tool, and foundation for formal system dynamics modeling and analysis. © 2024 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.

Publisher

Wiley

Subject

Management of Technology and Innovation,Strategy and Management,Social Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3