Automatic detection of knee osteoarthritis grading using artificial intelligence‐based methods

Author:

Yildirim Muhammed1,Mutlu Hurşit Burak1

Affiliation:

1. Department of Computer Engineering Malatya Turgut Ozal University Malatya Turkey

Abstract

AbstractOsteoarthritis (OA) means that the slippery cartilage tissue that covers the bone surfaces in the joints and allows the joint to move easily loses its properties and wears out. Knee OA is the wear and tear of the cartilage in the knee joint. Knee OA is a disease whose incidence increases especially after a certain age. Knee OA is difficult and costly to be detected by specialists using traditional methods and may lead to misdiagnosis. In this study, computer‐aided systems were used to prevent errors in traditional methods of detecting knee OA, shorten the diagnosis time, and accelerate the treatment process. In this study, a hybrid model was developed by using Darknet53, Histogram of Directional Gradients (HOG), Local Binary Model (LBP) methods for feature extraction, and Neighborhood Component Analysis (NCA) for feature selection. Our dataset used in experiments contains 1650 knee joint images and consists of five classes: Normal, Doubtful, Mild, Moderate, and Severe. In the experimental studies performed, the performance of the proposed method was compared with eight different Convolutional Neural Networks (CNN) Models. The developed model achieved better performance metrics than the eight different models used in the study and similar studies in the literature. The accuracy value of the developed model is 83.6%.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3