Stem Cell Activity in the Developing Human Cornea

Author:

Davies Sarah B.1,Chui Jeanie1,Madigan Michelle C.23,Provis Jan M.4,Wakefield Denis1,Di Girolamo Nick1

Affiliation:

1. Department of Pathology, School of Medical Sciences, Vision Science, University of New South Wales, Sydney, New South Wales, Australia

2. School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia

3. Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia

4. ARC Centre of Excellence in Vision Science and ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia

Abstract

Abstract The adult cornea harbors stem cells (SCs) in its periphery, in a niche known as the limbus. Over the past 2 decades there has been substantial research into these adult corneal SCs, their limbal niche, and their therapeutic applications. However, few studies have investigated how this niche and its SCs develop in humans. To better characterize this development, human fetal corneas from 8.5- to 22-weeks'-gestation (n = 173), neonatal (n = 2), and adult (n = 10) specimens were obtained. Histological and immunohistochemical assessments were conducted to determine embryological changes and expression of developmental and SC-related genes. Fresh fetal corneas were explanted to propagate corneal progenitors and cells characterized using reverse transcription-polymerase chain reaction, immunohistochemistry, flow cytometry, and colony-forming assays. A novel “ridge-like” structure was identified, circumscribing the fetal cornea, which we hypothesize represents the rudimentary SC niche. Immunohistochemistry disclosed “stem-like” cells across the cornea, becoming confined to this ridge with increasing gestational age. In addition, for the first time, pure long-term cultures of fetal corneal epithelium, which displayed phenotypical and functional properties similar to those of adult limbal SCs, were established. Optimization of culture techniques and purification of this SC population will allow for further investigation of their proliferative ability, with potential research and clinical applications. This study expands our understanding of limbal niche development and opens new avenues for investigation. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3