Game‐based distributed energy‐sharing model for prosumers in microgrids considering carbon emissions and its fast equilibrium‐finding method

Author:

Zheng Xinze1ORCID,Li Qiang1ORCID,Yuan Juzhong1ORCID

Affiliation:

1. State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering Chongqing University Chongqing China

Abstract

AbstractIn recent years, energy sharing has attracted a lot of attention. However, the intermediate platforms in centralized energy‐sharing methods cause the rapid growth of communication complexity and the risk of privacy leakage. Unlike complex energy‐sharing market mechanisms, in this paper, a simple and efficient distributed energy sharing for microgrids (MGs) is proposed, where game theory is employed to form flexible prices for prosumers and only local information is used to improve the privacy protection of prosumers. First, prosumers located in different areas are characterized more precisely and a two‐tier carbon emission cost model is built. Next, a game‐theory‐based distributed energy‐sharing model is proposed, where a flexible pricing mechanism is developed to enable prosumers to independently reach price agreements and achieve supply–demand balance within MGs. In the process, optimization models for obtaining equilibrium are formed and only local information is needed. However, solving these optimization models is generally time‐consuming. So, a distributed optimization method based on weighted subgradients is proposed to accelerate the equilibrium‐finding process. Finally, four cases are designed, and simulation results demonstrate that the prosumers' costs of our method are reduced by 7.5%–22.5% compared to the costs obtained by feed‐in tariff. Moreover, in the case of solving the distributed trading model for an MG at a 24‐h time scale, the iteration numbers of our method are only 38.9% and 49.3% of the two traditional solving methods.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3