Three heteroleptic copper(I) complexes with [Cu(P˄P)N2]+ structure and their fluorescence sensing for VOCs

Author:

Tang Shi‐Yue1ORCID,Song Li2ORCID,Jia Yi‐Fan13ORCID,Xu Wen‐Ze1ORCID,Yang Yi‐Xin1ORCID,Sun Liang‐Jian1ORCID,Shen Hang‐Yan1ORCID,Chai Wen‐Xiang13ORCID

Affiliation:

1. College of Materials and Chemistry China Jiliang University Hangzhou China

2. Department of Chemistry Zhejiang Sci‐Tech University Hangzhou China

3. Engineering Research Center of Environment‐Friendly Functional Materials, Ministry of Education Huaqiao University Xiamen China

Abstract

The design and research of luminescent and volatile organic compound (VOC) fluorescent sensing materials are of great significance and challenge. We report herein the ligand substitution reaction and VOC sensing of new heteroleptic [Cu(P˄P)N2]+ type copper(I) complexes. Firstly, three new complexes 13 were designed by utilizing a chelate diphosphine ligand 4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene (Xantphos) and synthesized by the substitution reaction of different N‐containing ligands of 4‐PBO (1), 3‐PBO (2), and 4,4′‐Bipy (3) (4‐PBO = 2‐(4′‐pyridyl)‐benzoxazole, 3‐PBO = 2‐(3′‐pyridyl)‐benzoxazole, 4,4′‐Bipy = 4,4′‐bipyridine), respectively. Three complexes were characterized by elemental analysis, spectroscopic analysis (IR, UV–Vis), single‐crystal X‐ray diffraction (SCXRD), and photoluminescence study. The SCXRD study revealed that complexes 1 and 2 both exhibit a molecular structure with tetrahedral copper(I) complex cation and hexafluorophosphate anion, while complex 3 differs in that its cation is a binuclear copper(I) structure bridged by 4,4′‐bipyridine. Three complexes 13 present supramolecular ribbon, supramolecular dimer, and supramolecular framework structure, respectively. Some differences of their UV–Vis absorption spectra were explained by TD‐DFT calculation and wavefunction analysis. It is found that 1 has an abnormal luminescence blue shift, and a luminescence mechanism through the high‐energy T2 excited state is proposed by TD‐DFT calculation. Based on 3, a fluorescent test strip was developed, and its fast and selective fluorescent sensing of pyridine vapor through quenching mechanism was successfully realized. The fluorescent quenching mechanism of the material was also studied, and it was proposed that the quenching should be attributed to the photoinduced electron transfer (PET) mechanism.

Funder

Science and Technology Program of Zhejiang Province

Publisher

Wiley

Subject

Inorganic Chemistry,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3