Bacterial Glycolipid Acting on Protein Transport Across Membranes

Author:

Mori Shoko1ORCID,Shionyu Masafumi2ORCID,Shimamoto Keiko13ORCID,Nomura Kaoru1ORCID

Affiliation:

1. Bioorganic Research Institute Suntory Foundation for Life Sciences 8-1-1 Seikadai, Seika-cho, Soraku-gun Kyoto 619-0284 Japan

2. Department of Frontier Bioscience Nagahama Institute of Bio-Science and Technology 1266 Tamura-cho Nagahama Shiga 526-0829 Japan

3. Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan

Abstract

AbstractThe process of protein transport across membranes involves a variety of factors and has been extensively investigated. Traditionally, proteinaceous translocons and chaperones have been recognized as crucial factors in this process. However, recent studies have highlighted the significant roles played by lipids and a glycolipid present in biological membranes in membrane protein transport. Membrane lipids can influence transport efficiency by altering the physicochemical properties of membranes. Notably, our studies have revealed that diacylglycerol (DAG) attenuates mobility in the membrane core region, leading to a dramatic suppression of membrane protein integration. Conversely, a glycolipid in Escherichia coli inner membranes, named membrane protein integrase (MPIase), enhances integration not only through the alteration of membrane properties but also via direct interactions with membrane proteins. This review explores the mechanisms of membrane protein integration mediated by membrane lipids, specifically DAG, and MPIase. Our results, along with the employed physicochemical analysis methods such as fluorescence measurements, nuclear magnetic resonance, surface plasmon resonance, and docking simulation, are presented to elucidate these mechanisms.

Funder

Japan Agency for Medical Research and Development

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Key contributions of a glycolipid to membrane protein integration;Proceedings of the Japan Academy, Series B;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3