Unveiling PET Hydrolase Surface Dynamics through Fluorescence Microscopy

Author:

Rennison A. P.1ORCID,Nousi A.2ORCID,Westh P.1ORCID,Marie R.2ORCID,Møller M. S.1ORCID

Affiliation:

1. Department of Biotechnology and Biomedicine Technical University of Denmark 2800 Kongens Lyngby Denmark

2. Department of Health Technology Technical University of Denmark 2800 Kongens Lyngby Denmark

Abstract

AbstractPET hydrolases are an emerging class of enzymes that are being heavily researched for their use in bioprocessing polyethylene terephthalate (PET). While work has been done in studying the binding of PET oligomers to the active site of these enzymes, the dynamics of PET hydrolases binding to a bulk PET surface is an unexplored area. Here, methods were developed for total internal reflection fluorescence (TIRF) microscopy and fluorescence recovery after photobleaching (FRAP) microscopy to study the adsorption and desorption dynamics of these proteins onto a PET surface. TIRF microscopy was employed to measure both on and off rates of two of the most commonly studied PET hydrolases, PHL7 and LCC, on a PET surface. It was found that these proteins have a much slower off rates on the order of 10−3 s−1, comparable to non‐productive binding in enzymes such as cellulose. In combination with FRAP microscopy, a dynamic model is proposed in which adsorption and desorption dominates over lateral diffusion over the surface. The results of this study could have implications for the future engineering of PET hydrolases, either to target them to a PET surface or to modulate interaction with their substrate.

Funder

Novo Nordisk Fonden

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3