Bacterial Isothiocyanate Biosynthesis by Rhodanese‐Catalyzed Sulfur Transfer onto Isonitriles

Author:

Mlotek Mandy D.1,Dose Benjamin1,Hertweck Christian12ORCID

Affiliation:

1. Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology Beutenbergstr. 11a 07745 Jena Germany

2. Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany

Abstract

AbstractNatural products bearing isothiocyanate (ITC) groups are an important group of specialized metabolites that play various roles in health, nutrition, and ecology. Whereas ITC biosynthesis via glucosinolates in plants has been studied in detail, there is a gap in understanding the bacterial route to specialized metabolites with such reactive heterocumulene groups, as in the antifungal sinapigladioside from Burkholderia gladioli. Here we propose an alternative ITC pathway by enzymatic sulfur transfer onto isonitriles catalyzed by rhodanese‐like enzymes (thiosulfate:cyanide sulfurtransferases). Mining the B. gladioli genome revealed six candidate genes (rhdA–F), which were individually expressed in E. coli. By means of a synthetic probe, the gene products were evaluated for their ability to produce the key ITC intermediate in the sinapigladioside pathway. In vitro biotransformation assays identified RhdE, a prototype single‐domain rhodanese, as the most potent ITC synthase. Interestingly, while RhdE also efficiently transforms cyanide into thiocyanate, it shows high specificity for the natural pathway intermediate, indicating that the sinapigladioside pathway has recruited a ubiquitous detoxification enzyme for the formation of a bioactive specialized metabolite. These findings not only elucidate an elusive step in bacterial ITC biosynthesis but also reveal a new function of rhodanese‐like enzymes in specialized metabolism.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Organic Chemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3