Affiliation:
1. Department of Exact and Natural Sciences Institute of Interdisciplinary Research Alexandru I. Cuza University Bulevardul Carol I, Nr. 11 700506 Iasi Romania
2. Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CEA, CNRS 91198 Gif-sur-Yvette France
3. Tumor Cell Dynamics Unit Inserm U1279 Gustave Roussy Institute Université Paris-Saclay Villejuif 94800 France
Abstract
AbstractIn recent years, targeted drug delivery has attracted a great interest for enhanced therapeutic efficiency, with diminished side effects, especially in cancer therapy. Cell penetrating peptides (CPPs) like HIV1−TAT peptides, appear to be the perfect vectors for translocating drugs or other cargoes across the plasma membrane, but their application is limited mostly due to insufficient specificity for intended targets. Although these molecules were successfully used, the mechanism by which the peptides enter the cell interior still needs to be clarified. The tripeptide motif RGD (arginine−glycine−aspartate), found in extracellular matrix proteins has high affinity for integrin receptors overexpressed in cancer and it is involved in different phases of disease progression, including proliferation, invasion and migration. Discovery of new peptides with high binding affinity for disease receptors and permeability of plasma membranes is desirable for both, development of targeted drug delivery systems and early detection and diagnosis. To complement the TAT peptide with specific targeting ability, we conjugated it with an integrin‐binding RGD motif. Although the idea of RGD−CPPs conjugates is not entirely new,[1] here we describe the permeability abilities and specificity of integrin receptors of RGD−TAT peptides in model membranes. Our findings reveal that this novel RGD sequence based on TAT peptide maintains its ability to permeate lipid membranes and exhibits specificity for integrin receptors embedded in giant unilamellar vesicles. This promising outcome suggests that the RGD−TAT peptide has significant potential for applications in the field of targeted drug delivery systems.
Funder
Agence Nationale de la Recherche
Subject
Organic Chemistry,Molecular Biology,Molecular Medicine,Biochemistry