A novel strategy for the study on molecular mechanism of prostate injury induced by 4,4′‐sulfonyldiphenol based on network toxicology analysis

Author:

Huang Shujun1ORCID

Affiliation:

1. West China Medical Center Sichuan University Chengdu China

Abstract

AbstractThe study aimed to investigate the underlying molecular mechanisms of prostate injury induced by 4,4′‐sulfonyldiphenol (BPS) exposure and propose a novel research strategy to systematically explore the molecular mechanisms of toxicant‐induced adverse health effects. By utilizing the ChEMBL, STITCH, and GeneCards databases, a total of 208 potential targets associated with BPS exposure and prostate injury were identified. Through screening the potential target network in the STRING database and Cytoscape software, we determined 21 core targets including AKT1, EGFR, and MAPK3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses conducted through the DAVID database illustrated that the potential targets of BPS in prostatic toxicity were primarily enriched in cancer signaling pathways and calcium signaling pathways. These findings suggest that BPS may actively participate in the occurrence and development of prostate inflammation, prostatic hyperplasia, prostate cancer, and other aspects of prostate injury by regulating prostate cancer cell apoptosis and proliferation, activating inflammatory signaling pathways, and modulating prostate adipocytes and fibroblasts. This research provides a theoretical basis for understanding the molecular mechanism of underlying BPS‐induced prostatic toxicity and establishes a foundation for the prevention and treatment of prostatic diseases associated with exposure to plastic products containing BPS and certain BPS‐overwhelmed environments.

Publisher

Wiley

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3