Unilateral ends‐out gene targeting increases mistargeting through supporting extensive single‐strand assimilation

Author:

Mitrikeski Petar Tomev12ORCID

Affiliation:

1. Laboratory of Evolutionary Genetics, Division of Molecular Biology Ruđer Bošković Institute Zagreb Croatia

2. Faculty of Philosophy and Religious Studies University of Zagreb Zagreb Croatia

Abstract

AbstractEnds‐out gene targeting enables the swapping of endogenous alleles with exogenous ones through homologous recombination which bears great implications both fundamental and applicable. To address the recombination mechanism(s) behind it, an experimental system was designed to distinguish between a possible (but rarely active) unilateral and the expected bilateral targeting in the yeast Saccharomyces cerevisiae in which the proportions of the two alternative genetic outcomes are conceived to mirror the probabilities of the two scenarios. The quantitative analysis showed that the bilateral targeting was expectedly predominant. However, an analogous comparative analysis on a different experimental set suggested a prevalence of unilateral targeting unveiling an uncertainty whether the extensively resected targeting modules only mimic unilateral invasion. Based on this, a comprehensive qualitative analysis was conducted revealing a single basic ends‐out gene targeting mechanism composed of two intertwined pathways differing in the way how the homologous invasion is initiated and/or the production of the intermediates is conducted. This study suggests that bilateral targeting lowers mistargeting plausibly by limiting strand assimilation, unlike unilateral targeting which may initiate extensive strand assimilation producing intermediates capable of supporting multiple genetic outcomes which leads to mistargeting. Some of these outcomes can also be produced by mimicking unilateral invasion.

Funder

Ministry of Science and Technology, Croatia

Publisher

Wiley

Subject

Genetics,Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3