Automated streamflow measurements in high‐elevation Alpine catchments

Author:

Hofmeister Florentin1ORCID,Venegas Brenda Rubens1,Sentlinger Gabriel2,Tarantik Michael1,Blume Theresa3ORCID,Disse Markus1ORCID,Chiogna Gabriele14ORCID

Affiliation:

1. Chair of Hydrology and River Basin Management, TUM School of Engineering and Design Technical University of Munich Munich Germany

2. Fathom Scientific Ltd Bowen Island British Columbia Canada

3. Hydrology Section Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany

4. Department of Geography Institute of Geography, University of Innsbruck Innsbruck Austria

Abstract

AbstractSalt dilution is a well‐established streamflow measurement method in creeks, which works particularly well downstream of turbulent flow sections as the mixing of the salt tracer is enhanced. Usually, salt dilution measurements are performed manually, which considerably limits the observations of rare peak flow events. These events are particularly important for constructing robust rating curves and avoiding large uncertainties in the extrapolation of streamflow values. An additional challenge is the variability of the river cross section, especially after larger discharge events, leading to nonstationary rating curves. Therefore, discharge measurements well distributed over time are needed to construct a reliable streamflow–water level relationship and to detect changes caused by erosion and deposition processes. To overcome these two issues, we used an automated streamflow measuring systems at three different sites with contrasting hydrological and hydraulic characteristics in the Alps. This system allowed us to measure discharge at nearly maximum flow of the observation period (2020–2021) at all three sites and to detect abrupt changes in the rating curve by performing event‐based salt injections. The uncertainty in the measurements was quantified, and the streamflow was compared with official gauging stations in the same catchment. Based on a very large dataset of almost 300 measurements, we were able to evaluate the reliability of the system and identify the primary sources of uncertainty in the experimental setup. One key aspect was the site selection for the downstream electrical conductivity sensors, as measurement location strongly controls the signal‐to‐noise ratio in the recorded breakthrough curves.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3