Studying the electrical, mechanical, and biological properties of BCZT–HA composites

Author:

Dehnov Fatemeh Zare1,Hayati Raziye1ORCID,Tayebi Lobat2ORCID

Affiliation:

1. Department of Materials Engineering Yasouj University Yasouj Iran

2. Marquette University School of Dentistry Milwaukee Wisconsin USA

Abstract

AbstractThe piezoelectric properties of natural bone and their influence on bone growth have inspired researchers to study a range of bio‐piezoelectric composite materials. By exploring these materials, researchers aim to understand better, how piezoelectricity can be controlled to promote bone growth and tissue regeneration. In this work, the prominent piezoelectric material, (Ba, Zr) TiO3‐x(Ba,Ca)TiO3, abbreviated as BCZT, was selected as a possible bone growth enhancer in hydroxyapatite (HA) scaffolds. Initially, BCZT and hydroxyapatite (HA) powders were synthesized using the sol–gel method. Subsequently, various composite samples of BCZT–xHA were prepared using the conventional solid‐state method. After sintering the samples at 1300°C, the phase structure, microstructure, density, and electrical properties were characterized. The samples' compressive strength was determined by analyzing the outcomes of basic compression tests. The biological behavior of the samples in terms of in vitro simulated body fluid immersion and MTT tests were evaluated. Our results revealed that among the BCZT–xHA samples, the BCZT‐20HA sample had the best composition, considering its electrical, mechanical, and biological properties. A d33 value of 10 pC/N, dielectric permittivity of 110, and the g33 equal to 10.27 mV m/N resulted in the output voltage of 1.03 V. The results of the MTT assay test confirmed the noncytotoxic nature of the samples with the highest optical density in the BCZT‐20HA sample.

Funder

Yasouj University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3