Characterization and in‐vitro assessment of silicon‐based apatite microspheres for bone tissue engineering applications

Author:

Wee Chien Yi1ORCID,Lim Quentin Ray Tjieh2,Xu Xin3,Yang Zhijie4,Wang Dong3,Thian Eng San1

Affiliation:

1. Department of Mechanical Engineering National University of Singapore Singapore Singapore

2. Department of Material Science and Engineering National University of Singapore Singapore Singapore

3. Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering Hainan University Haikou China

4. Zhejiang Biocare Biotechnology Co. Ltd Shaoxing China

Abstract

AbstractIn the field of bone tissue engineering, silicon (Si) has been found as an essential element for bone growth. However, the use of silicon in bioceramics microspheres remains limited. In this work, different weight percentages (0.8, 1.6, and 2.4 wt %) of silicon was incorporated into hydroxyapatite and fabricated into microspheres. 2.4 wt % of Si incorporated into HAp microspheres (2.4 SiHAp) were found to enhance functional properties of the microspheres which resulted in improved cell viability of human mesenchymal stem cells (hMSCs), demonstrating rapid cell proliferation rates resulting in high cell density accumulated on the surface of the microspheres which in turn permitted better hMSCs differentiation into osteoblasts when validated by bone marker assays (Type I collagen, alkaline phosphatase, osteocalcin, and osteopontin) compared to apatite microspheres of lower wt % of Si incorporated and non‐substituted HAp (2.4 SiHAp >1.6 SiHAp >0.8 SiHAp > HAp). SEM images displayed the densest cell population on 2.4 SiHAp surfaces with the greatest degree of cell stretching and bridging between neighboring microspheres. Incorporation of silicon into apatite microspheres was found to accelerate the rate and number of apatite nucleation sites formed when subjected to physiological conditions improving the interface between the microsphere scaffolds and bone forming cells, facilitating better adhesion and proliferation.

Funder

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3