Hydroxyapatite synthesis and characterization from waste animal bones and natural sources for biomedical applications

Author:

Okpe Promise Chinonso12,Folorunso Oladipo34ORCID,Aigbodion Victor Sunday25,Obayi Camillus2

Affiliation:

1. Department of Biomedical Engineering Federal University of Allied Health Sciences Enugu Nigeria

2. Department of Metallurgical and Materials Engineering University of Nigeria Nsukka Nigeria

3. Chemical, Metallurgical, and Materials Engineering Department Tshwane University of Technology Pretoria South Africa

4. French South African Institute of Technology (F'SATI)/Department of Electrical Engineering Tshwane University of Technology Pretoria South Africa

5. Faculty of Engineering and the Built Environment University of Johannesburg P. O. Box 534, Auckland Park Johannesburg South Africa

Abstract

AbstractHydroxyapatites (HAps) synthesized from waste animal bones have recently gained attention due to their outstanding properties. This is because there is a need to fabricate scaffolds with desirable mechanical strength, ability to withstand high temperatures, and insoluble in solvents such as water, acetone, ethanol, and isopropyl alcohol. This study is an extensive summary of many articles on the routes of synthesis/preparation of HAp, and the optimum processing parameter, and the biomedical application areas, such as: drug administration, dental implants, bone tissue engineering, orthopedic implant coatings, and tissue regeneration/wound healing. A broad catalog of the synthesis methods (and combination methods), temperature/time, shape/size, and the calcium‐to‐phosphorous (Ca/P) value of diverse waste animal bone sources were reported. The alkaline hydrolysis method is proposed to be suitable for synthesizing HAp from natural sources due to the technique's ability to produce intrinsic HAp. The method is also preferred to the calcination method owing to the phase transformation that takes place at high temperatures during calcinations. However, calcinations aid in removing impurities and germs during heating at high temperatures. When compared to calcination technique, alkaline hydrolysis method results in crystalline HAp; the higher degree of crystallinity is disadvantageous to HAp bioactivity. In addition, the standardization and removal of impurities and contaminants, thorough biocompatibility to ensure clinical safety of the HAp to the human body, and improvement of the mechanical strength and toughness to match specific requirements for the various biomedical applications are the important areas for future studies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3