Development of hydrogel‐based composite scaffolds containing eggshell particles for bone regeneration applications

Author:

Calvert Nicholas D.1ORCID,Proulx Scott1ORCID,Rodriguez‐Navarro Alejandro2ORCID,Ahmed Tamer1ORCID,Lehoux Eric A.3ORCID,Hincke Maxwell T.14ORCID,Catelas Isabelle356ORCID

Affiliation:

1. Department of Cellular and Molecular Medicine, Faculty of Medicine University of Ottawa Ottawa Ontario Canada

2. Departamento de Mineralogia y Petrologia Universidad de Granada Granada Spain

3. Department of Mechanical Engineering, Faculty of Engineering University of Ottawa Ottawa Ontario Canada

4. Department of Innovation in Medical Education, Faculty of Medicine University of Ottawa Ottawa Ontario Canada

5. Department of Surgery, Faculty of Medicine University of Ottawa Ottawa Ontario Canada

6. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine University of Ottawa Ottawa Ontario Canada

Abstract

AbstractThis study describes the development and characterization of novel composite scaffolds, made of an alginate‐chitosan hydrogel matrix containing eggshell (ES) particles, for bone tissue engineering applications. Scaffolds with ES particles, either untreated or treated with phosphoric acid to create a nanotextured particle surface, were compared to scaffolds without particles. Results indicate that the nanotexturing process exposed occluded ES proteins orthologous to those in human bone extracellular matrix. Scaffolds with ES or nanotextured ES (NTES) particles had a higher porosity (81 ± 4% and 89 ± 5%, respectively) than scaffolds without particles (59 ± 5%) (p = .002 and p < .001, respectively). Scaffolds with NTES particles had a larger median pore size (113 μm [interquartile range [IQ]: 88–140 μm]) than scaffolds with ES particles (94 μm [IQ: 75–112 μm]) and scaffolds without particles (99 μm [IQ: 74–135 μm]) (p < .001 and p = .011, respectively). The compressive modulus of the scaffolds with ES or NTES particles remained low (3.69 ± 0.70 and 3.14 ± 0.62 kPa, respectively), but these scaffolds were more resistant to deformation following maximum compression than those without particles. Finally, scaffolds with ES or NTES particles allowed better retention of human mesenchymal stem cells during seeding (53 ± 12% and 57 ± 8%, respectively, vs. 17 ± 5% for scaffolds without particles; p < .001 in both cases), as well as higher cell viability up to 21 days of culture (67 ± 17% and 61 ± 11%, respectively, vs. 15 ± 7% for scaffolds without particles; p < .001 in both cases). In addition, alkaline phosphatase (ALP) activity increased up to 558 ± 164% on day 21 in the scaffolds with ES particles, and up to 567 ± 217% on day 14 in the scaffolds with NTES particles (p = .006 and p = .002, respectively, relative to day 0). Overall, this study shows that the physicochemical properties of the alginate‐chitosan hydrogel scaffolds with ES or NTES particles are similar to those of cancellous bone. In addition, scaffolds with particles supported early osteogenic differentiation and therefore represent a promising new bone substitute, especially for non‐load bearing applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3