3D‐printed silicate porous bioceramics promoted the polarization of M2‐macrophages that enhanced the angiogenesis in bone regeneration

Author:

Zang Chengwu1ORCID,Che Min2,Xian Hang1,Xiao Xin1,Li Tengfei3,Chen Yongxiang1,Liu Yaxiong4,Cong Rui1

Affiliation:

1. Department of Orthopedics Xijing Hospital, the Air Force Medical University Xi'an China

2. Affiliated Central Hospital of Shenyang Medical College Shenyang China

3. The North West Institute of Nuclear Technology Xi'an China

4. Jihua Laboratory Foshan China

Abstract

AbstractThe failure of bone regeneration has been considered as a serious problem that troubling patients for decades, most of which was resulted by the poor angiogenesis and chronic inflammation after surgery. Among multiple materials applied in the repair of bone defect, silicate bioceramics attracted researchers because of its excellent bioactivity. The purpose of this study was to detect the effect of specific bioactive glass ceramic (AP40, based on crystalline phases of apatite and wollastonite) on angiogenesis and the subsequent bone growth through the modulation of macrophages. Two groups were included in this study: control group (macrophages without any stimulation, denominated as Control) and AP40 group (macrophages incubated on AP40). This study investigated the effect of AP40 on macrophages polarization (RAW264.7) and angiogenesis in vitro and in vivo. Additionally, the changes of angiogenic ability regulated by macrophages were explored. AP40 showed excellent angiogenesis potential and the expression of CD31 was promoted through the modulation of macrophages toward M2 subtype. Additionally, the macrophages incubated on AP40 synthesized more PDGF‐BB comparing to macrophages without any stimulation, which contributed to the improved angiogenetic ability of human umbilical vein endothelial cells (HUVECs). Results of in vivo studies indicated increased bone ingrowth along the implants, which indicated the potential of bioceramics for bone defect repair clinically.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3