A coordinated drainage and regulation model of urban water systems in China: A case study in Fuzhou city

Author:

Wang Hao1,Lei Xiaohui1,Wang Chao1,Liao Weihong1,Kang Aiqing1,Huang Haocheng1ORCID,Ding Xingchen1,Chen Yang1,Zhang Xuelian1

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin China Institute of Water Resources and Hydropower Research Beijing China

Abstract

AbstractExtreme climate and urbanization lead to frequent urban floods, and urban water system dispatching is an important means of urban flood control. A coupled model is proposed to simulate urban floods in real‐time and achieve comprehensive water system control for urban floods. First, the systematical description of coordinated drainage and regulation model of urban water systems in China is introduced, then the practice of Fuzhou city was taken as an example to introduce the prediction and forecast systems, as well as water system regulation for urban flood and waterlogging disaster in detail. Results show that the root‐mean‐square error of river flood prediction is less than 0.3 and that the calculation time of waterlogging simulation is less than 10 min; the optimization regulation reduces the peak river water level by 31 cm. This study will establish a novel urban water system management model to help urban managers better reduce the loss caused by urban floods.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3