Affiliation:
1. School of Chemical and Environmental Engineering Technical University of Crete Chania Greece
2. Center of Materials Technology and Photonics Hellenic Mediterranean University Heraklion Greece
3. Department of Environment University of the Aegean Mytilene Greece
4. Department of Agriculture Hellenic Mediterranean University Heraklion Greece
Abstract
AbstractBACKGROUNDHospital wastewater (HWW) charges wastewater treatment plants (WWTPs) with a mixture of contaminants such as pharmaceutically active compounds (PhACs) and pathogenic bacteria. This matrix is considered highly toxic to the ecosystem and organisms, and it may induce the development of antibiotic resistant bacteria (ARB) and the transfer of antibiotic resistance genes (ARGs) within microbial communities. Conventional WWTPs cannot treat HWW effectively, because they have not been designed to confront this challenge. Therefore, this study investigated the applicability of photocatalysis to purify HWW, regarding its ecotoxicity and the removal rates of targeted substances, selected pathogenic bacteria and specific ARGs.RESULTSThe HWW samples showed high toxicity towards the bioindicator Daphnia magna population, while they also contained significant levels of ARB and ARGs. Upon application of the photocatalytic treatment, the pharmaceutical concentrations decreased at a rate of >80% and the removal rates of the examined bacteria (Escherichia coli, Enterococci, Klebsiella sp. and Staphylococcus sp.) were >80%. Importantly, the bacteria remaining after photocatalysis were sensitive to the tested antibiotics. Conversely, the examined ARGs were present in high concentrations before and after photocatalytic treatment. For example, the concentrations of the selected genes, namely ampC, sul2, tetA and qnrA, in the effluents were from 104 to 106 gene copies L−1.CONCLUSIONSPhotocatalysis may be a promising treatment technique for the elimination of PhACs and pathogenic bacteria from HWW. Moreover, it proved capable of altering the antibiotic resistance profile of the bacteria surviving after treatment, making them sensitive to certain antibiotic compounds. However, the main concern regarding public health protection remains, as the presence of ARGs in effluents in considerable concentrations may induce antibiotic resistance in bacterial communities of aquatic environments. © 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
Subject
Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献