A‐site coordinating cation engineering in zero‐dimensional antimony halide perovskites for strong self‐trapped exciton emission

Author:

Liu Xingyi1,Gao Xiaowen1,Xiong Lin1,Li Shuoxue1,Zhang Yu1,Li Qi1,Jiang Hong1ORCID,Xu Dongsheng1ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering Peking University Beijing China

Abstract

AbstractLow‐dimensional hybrid halide perovskites represent a promising class of materials in optoelectronic applications because of strong broad self‐trapped exciton (STE) emissions. However, there exists a limitation in designing the ideal A‐site cation that makes the material satisfy the structure tolerance and exhibit STE emission raised by the appropriate electron–phonon coupling effect. To overcome this dilemma, we developed an inorganic metal‐organic dimethyl sulfoxide (DMSO) coordinating strategy to synthesize a series of zero‐dimensional (0D) Sb‐based halide perovskites including Na3SbBr6·DMSO6 (1), AlSbBr6·DMSO6 (2), AlSbCl6·DMSO6 (3), GaSbCl6·DMSO6 (4), Mn2Sb2Br10·DMSO13 (5) and MgSbBr5·DMSO7 (6), in which the distinctive coordinating A‐site cation [Am‐DMSO6]n+ efficiently separate the [SbXz] polyhedrons. Advantageously, these materials all exhibit broadband‐emissions with full widths at half maxima (FWHM) of 95–184 nm, and the highest photoluminescent quantum yield (PLQY) of 3 reaches 92%. Notably, compounds 2–4 are able to remain stable after storage of more than 120 d. First‐principles calculations indicate that the origin of the efficient STE emission can be attributed to the localized distortion in [SbXz] polyhedron upon optical excitation. Experimental and calculational results demonstrate that the proposed coordinating strategy provides a way to efficiently expand the variety of novel high‐performance STE emitters and continuously regulate their emission behaviors.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3