Developmental Exposure to Endocrine Disruptors Expands Murine Myometrial Stem Cell Compartment as a Prerequisite to Leiomyoma Tumorigenesis

Author:

Mas Aymara1,Stone Leyland1,O'Connor Paul M.2,Yang Qiwei1,Kleven Daniel3,Simon Carlos4,Walker Cheryl L.5,Al-Hendy Ayman1

Affiliation:

1. a Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia, USA

2. b Department of Physiology, Augusta University, Augusta, Georgia, USA

3. c Department of Pathology, Augusta University, Augusta, Georgia, USA

4. d Department of Pediatrics, Obstetrics and Gynecology, Valencia University, INCLIVA, Valencia, Spain

5. e Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA

Abstract

Abstract Despite the high prevalence and major negative impact of uterine fibroids (UFs) on women's health, their pathogenesis remains largely unknown. While tumor-initiating cells have been previously isolated from UFs, the cell of origin for these tumors in normal myometrium has not been identified. We isolated cells with Stro1/CD44 surface markers from normal myometrium expressing stem cell markers Oct-4/c-kit/nanog that exhibited the properties of myometrial stem/progenitor-like cells (MSCs). Using a murine model for UFs, we showed that the cervix was a hypoxic “niche” and primary site (96%) for fibroid development in these animals. The pool size of these MSCs also responded to environmental cues, contracting with age and expanding in response to developmental environmental exposures that promote fibroid development. Translating these findings to women, the number of MSCs in unaffected human myometrium correlated with risk for developing UFs. Caucasian (CC) women with fibroids had increased numbers of MSCs relative to CC women without fibroids, and African-American (AA) women at highest risk for these tumors had the highest number of MSCs: AA-with fibroids > CC-with fibroids > AA-without fibroids > CC-without fibroids. These data identify Stro1+/CD44+ MSCs as MSC/progenitor cell for UFs, and a target for ethnic and environmental factors that increase UF risk.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3