Affiliation:
1. School of Mathematics Sun Yat‐sen University Guangzhou Guangdong China
2. School of Mathematics Jiaying University Meizhou Guangdong China
Abstract
The aim of this paper is to establish a precise illustration for the structure of the nonconstant steady states for a Beddington–DeAngelis and Tanner predator–prey reaction–diffusion system with prey‐taxis. We treat the nonlinear prey‐taxis as a bifurcation parameter to analyze the bifurcation structure of the system. Furthermore, the exported global bifurcation theorem, under a rather natural condition, offers the existence of nonconstant steady states. In the proof, a priori estimates of steady states will play an important role. The local stability analysis with a numerical simulation and bifurcation analysis are given. Finally, some conclusions including biological meanings are performed to summarize our main analytic results and future investigations.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics