A review of computational modeling, machine learning and image analysis in cancer metastasis dynamics

Author:

Hirway Shreyas U.1,Weinberg Seth H.1ORCID

Affiliation:

1. Department of Biomedical Engineering The Ohio State University Columbus Ohio USA

Abstract

AbstractCancer is a life‐threatening process that stems from genetic mutations in cells, which leads to the formation of tumors, and is a major cause of deaths in the United States, with secondary metastasis being a major driver of fatality. The development of an optimal metastatic environment is an essential process prior to tumor metastasis. This process, called pre‐metastatic niche formation, involves the activation of resident fibroblast‐like cells and macrophages. Tumor‐mediated factors introduced to this environment transform resident cells that secrete additional growth factors and remodel the extracellular matrix, which is thought to promote tumor colonization and metastasis in the secondary environment. Furthermore, an important component of metastasis is the biological process of epithelial–mesenchymal transition, which can be exploited by cancer cells to change their phenotype, to migrate and proliferate as necessary. In this review, we discuss recent advances in the investigation of cancer growth and migration. Computational models that focus on biochemical signaling and multicellular dynamics are examined. Machine learning models and image analysis that classify cancer‐related data are also explored. Through this review, we highlight advances in the study of important aspects of cancer and metastasis signaling and computational tools to study these dynamics.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning meets physics: A two-way street;Proceedings of the National Academy of Sciences;2024-06-24

2. How much do we know about the metastatic process?;Clinical & Experimental Metastasis;2024-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3