Pharmacokinetics, disposition, and biotransformation of the cardiac myosin inhibitor aficamten in humans

Author:

Xu Donghong1ORCID,Divanji Punag2,Griffith Adrienne1,Sukhun Rajaa3,Cheplo Kathleen4,Li Jianlin5,German Polina1

Affiliation:

1. Department of Clinical Pharmacology Cytokinetics, Incorporated South San Francisco California USA

2. Department of Clinical Research Cytokinetics, Incorporated South San Francisco California USA

3. Department of Research DMPK Cytokinetics, Incorporated South San Francisco California USA

4. Department of Clinical Operation Cytokinetics, Incorporated South San Francisco California USA

5. Department of Biostatistics Cytokinetics, Incorporated South San Francisco California USA

Abstract

AbstractAficamten, a cardiac myosin inhibitor, is being developed for the treatment of patients with symptomatic hypertrophic cardiomyopathy (HCM). The purpose of this study was to determine the absorption, metabolism, and excretion of aficamten. Eight healthy male participants received a single oral dose of 20 mg aficamten (containing approximately 100 μCi of radiocarbon). Blood, urine, and feces samples were collected up to a maximum of Day 26. The pharmacokinetics of aficamten were characterized by moderate absorption, with a median tmax of 2.0 h postdose. The median t1/2 of aficamten was 99.6 h with similar t1/2 observed for metabolites and total radioactivity in plasma and whole blood. The overall total recovery of administered total radioactivity was 89.7% with 57.7% of the dose recovered in feces and 32.0% in urine. The main circulating metabolites in plasma included monohydroxylated metabolites M1a (CK‐3834282) and M1b (CK‐3834283) accounting for 10.5% and 36.4% of the total radioactivity AUC both with a median tmax of 5 h. The other major plasma metabolite was M5 (an oxygen‐linked glucuronide conjugate of M1a), which accounted for 10.3% of the total plasma radioactivity exposure, with a tmax of 24 h. In urine, M5 was the most abundant metabolite with 8.02% total radioactive dose (TRD), followed by M1a and M1b with 6.16% and 2.85% TRD, respectively; however, there were no metabolites in urine observed at >10% of dose. The major metabolite in feces was M18 representing 44.1% of the radioactive dose. These findings indicated that aficamten was eliminated by metabolism, and to a minor extent, by fecal excretion of unchanged aficamten with renal excretion playing a minor role. Feces were the principal route of excretion of the radioactive dose.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3